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I. Introduction

IN this paper, we present a classification of calcium

channels and drugs acting at these channels, with the

aim of describing a prospective classification that will

allow for changes as new channels or drug-binding sites

are established. This report represents the consensus
view of the calcium channel subcommittee (table I) of

the International Union of Pharmacology receptor no-

menclature committee. The classification is not a com-

prehensive documentation of the literature but reflects

the current state of accepted knowledge, with criteria to

allow classification of channels and sites of action of

drugs modifying channel function. The classification is
based primarily on channels, the many intracellular sites

for Ca2� await further attention.

* Present address: Institut de Recherches Internationales Servier,

Suresnes, France.

It must be emphasised that there may be several dif-

ferences in the way compounds interact with ion chan-
nels compared with more classically defined receptors
such as adrenoceptors, and the concepts used in this

classification differ in some respects from those used by
some of the other receptor classification committees.
VDCCs have distinct binding sites for many drugs, but

there may be no endogenous ligands for these sites.
Although the predominant control of channel function

may be by voltage changes across the membrane, the
sensitivity to voltage may be modified by many factors

such as channel phosphorylation, binding of G proteins
to the channel, or binding of compounds such as DHP5.*

Such changes might change sensitivity to membrane
voltage to such an extent that activation may fall within

the range of the resting membrane potential of a given

* Abbreviations: DHP, dihydropyridine; VDCC, voltage-dependent

calcium channel.

 at T
ham

m
asart U

niversity on D
ecem

ber 8, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


Composition of International Union of Pharmacology subcommittee on classification of calcium channels and the sites of action of drugs modifying

channel function

TABLE 1

R. Pao!etti

President: Institute of Pharmacol. Sciences, Via Baizaretti 9, 20133

Milan, Italy

Telephone: 39/2/20488324/341, Fax: 39/2/29404961

M. Spedding

Secretary: Syntex Research Centre, Research Park, Riccarton, Edin-

burgh, EH14 4AP, Scotland

Telephone: 44314495199, Fax: 44314495562

Present address: Institut de Recherches Servier

Suresnes, France

Telephone: 33145065173, Fax: 33145067606

Members:
F. R. BUhler
Department of Internal Medicine

University Hospital

CH-4031 Basel, Switzerland

M. 0. Christen

Lab. de Therapeutique Moderne L. T. M

Latema Sarbach

42, Rue Rouget-de-Lisle

92151 Seresnes Cedex

France

S. Ebashi

Director-Genera! and Professor

National Institute for Physical Sciences

Myodaiji, Okazaki 444, Japan

C. Fieschi
Cattedara di Clinica Neurologica

Viale del!’Universita 90

University of Rome

00185 Milan, Italy

A. Fleckenstein and G. Fleckenstein-Grun

Albert Ludwigs Universitat

Physiologisches Institut

Herman Herder Strasse 7

D7800 Freiburg, Germany

T. Godfraind
Laboratoire de Pharmacodynamie

Generale et de Pharmacologie
Universite Catholique de Louvain

Avenue Mounier 73-U. C. L 7350

B-1200 Bruxelles, Belgium

B. E. G. Johansson

AB Hassle Research Labs
S-431 83 Molndal
Sweden

S. Kazda
Bayer A. G.-Institute fuer Pharmacologie

Postfach 10 17 09 D 5600, Wuppertal 1
Federal Republic of Germany

R. Kretzchmar

Knoll A. G Research and Development
Cardiovascular Pharmacology

P. 0. Box2l 0805

D-6700 Lugwigshafen, Federal Republic of Germany

R. J. Miller

Department of Pharmacology
University of Chicago
947 E. 58th Street
Chicago, IL 60637, USA

Members-continued:

J. Moss

Professor of Anesthesia and Critical Care

The University of Chicago Medical Center

5841 S. Maryland Avenue

Box 428

Chicago, IL 60637, USA

S. Murata

Department II

Pharmacological Research Laboratory

Tanabe Seiyaku Co Ltd

2-2-50, Kawagishi, Toda-Shi

Saitama, Japan

J. Olesen

Department of Neurology

Gentofte Hospital

University of Copenhagen

2900 Copenhagen, Denmark

L. H. Opie

University of Capetown
Heart Research Unit and Hypertension Clinic

Department of Medicine Medical School,

Observatory 7925, South Africa

A. Schwartz
Professor and Chairman
Department of Pharmacology and Cell Biophysiology

University of Cincinnati College of Medicine
231 Bethesda Ave., ML 575

Cincinnati, OH 45267-0575, USA

B. Siesj#{246}

University of Lund

Laboratory for Experiment

Brain Research, Floor EA-5

Lund Hospital

S22185 Lund, Sweden

R. W. Tsien

Department of Molecular Cell Physiology

Stanford University

B 105 Beckman Centre

Stanford, CA, USA

P. M. Vanhoutte

Baylor College of Medicine

Centre for Experimental Therapeutics

One Baylor Plaza

Houston, TX 77030, USA

J. M. Van Nueten

International Research Council

Janssen Research Foundation

Turnhoutseweg 30 B-2340 Beerse

Belgium

P. A. Van Zwieten

Departments of Pharmacotherapy, Pharmacology and Cardiology

Academic Medical Centre and Academic Hospital

University of Amsterdam, Meibergdreef 15
1105 AZ Amsterdam, the Netherlands

 at T
ham

m
asart U

niversity on D
ecem

ber 8, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


CALCIUM CHANNELS 365

cell and voltage control is lost under physiological con-

ditions. Nevertheless, the structure may still be a voltage-

dependent channel. Channels may also exist with differ-

ent conformational states (i.e., closed, open, inactivated),

each state having different affinities for different drugs.

Thus, interventions that change the proportion of the

different channel states may modulate the sensitivity of
the channels to these drugs, and, if the drugs vary in

their affinities for the different states, these changes may
be complex. This means that it is dangerous to use rank
orders of potencies of inhibitors to assess channel types
(as has been used with agonists in receptor classifica-

tion), because the same channel may give different rank

orders of potency depending on the preponderance of the

different states. Therefore, we list the appropriate crite-

na for classification of channels and of binding sites on

the channels.

II. Historical Aspects

The importance of Ca2� for the maintenance of myo-

cardial contractility was observed by Ringer as early as
the 1880s, but only in the last three decades has the

critical role of Ca2� in the contractile processes been
established in skeletal, cardiac, and smooth muscle. Ca2�

plays a crucial role in secretory responses and is perhaps

the most widespread second messenger in eucaryotic
cells.

During the 1960s, the concept of drugs acting as “cal-

cium antagonists” was put forward by the research

groups of Fleckenstein and Godfraind. Fleckenstein’s

group discovered the highly selective “calcium antago-

nistic” action of verapamil and its methoxy derivative

D-600 (gallopamil), which showed interference with

Ca2�-dependent excitation-contraction coupling in the
myocardium without an inhibitory influence on the Na�’-

dependent parameters of the action potential. He later
added nifedipine and diltiazem to this group of drugs.

The effects of the drugs could be overcome by increasing

the extracellular Ca24 concentration or by agents that
could improve the availability of Ca2� to the contractile

system such as fl-adrenoceptor agonists or cardiac gly-
cosides. Godfraind’s group made a major contribution to

the development of the concept in the smooth muscle,
showing that diphenylpiperazine analogues such as cm-

narizine inhibited agonist-evoked contractions depend-
ent on extracellular Ca2� and defining the interrelation-

ship of the inhibitory effects of the drugs with K� and

Ca2�. The concept of “calcium antagonism” was later
extended to many other drugs including many diphen-

ylpiperazine derivatives and the wide range of DHP
derivatives of which nifedipine was the prototype. The

historical development of the concept has been exten-
sively reviewed (Fleckenstein, 1983a,b; Godfraind et al.,

1986). In radioligand-binding studies, from 1982, it be-

came clear that different binding sites existed for the
drugs. Several classifications were proposed by individual

workers (Fleckenstein, 1988; Ferry and Glossmann, 1982;

Godfraind et al., 1986; Spedding, 1982, 1985a,b; Janis et
al., 1987; Nayler, 1988), by an international committee

(Vanhoutte and Paoletti, 1987), and later by a cardiology
working group (Opie et al., 1987). The classification of

Vanhoutte and Paoletti was based primarily on func-

tional differences between the drugs, with the aim of
providing a rationale for the treatment of different din-
ical indications.

Recently, further evidence has accrued showing that
many different forms of Ca2�-selective channels may
exist, some of which may be receptor gated. Furthermore,

the primary structures of some forms of Ca2� channels
have been elucidated, and the sites of action of drugs
modifying channel function are being defined. The

classes of ion channel and the binding sites for drugs on

these channels have been revisited and criteria estab-

lished for their classification.

III. Criteria for Classification

A. Clvznnel Classification

The following techniques should be used to define
different channels and the site of action of drugs.

1. Functional studies. Functional studies are crucial to
define mode of action and selectivity in a more physio-
logical milieu. Definition of channels should be consid-

ered using different criteria from those traditionally as-
sociated with receptor classification (i.e., agonist and

antagonist potencies). Because some drugs may have

affinity for only certain states of the channel, affinity

may change depending on the activation conditions used,
engendering different rank orders of potency under dif-
ferent experimental conditions (see below). Rank order

of potency of different agents is, therefore, insufficient
to define channel subtypes because the potency of some
compounds may be more susceptible than others to these
phenomena. Drug interaction studies (competition ex-

periments with drugs sharing the same binding site,
reversal with channel activators, noncompetitive inter-

actions with allosterically linked sites) should confirm

the site of action. An important criterion for selectivity
of action is to establish that forms of cellular activation
that do not utilise the ion channel in question are not
modified by the drug.

Determination of the affinity of drugs for ion channels
may be critically dependent on the use and voltage de-
pendency of the drug, which is dependent on the binding

site. At sodium channels, binding of tetrodotoxin is rel-
atively non-voltage dependent, and affinity for sodium

channels is, consequently, easy to quantify. This con-
trasts markedly with the interaction of DHPs with L-
type channels. Although it is now accepted that DHPs
usually have high affinity for the inactivated state of the
channel and low affinity for other states (closed, open),
they may have high affinity for the open state in smooth
muscle cells (Cohen and McCarthy, 1989). Consequently,
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366 SPEDDING AND PAOLETTI

there will be an affinity constant for a high-affinity state,

which is close to the high-affinity constant (usually less

than nanomolar) observed in binding experiments. In

functional experiments, however, the proportion of chan-
nels in the high-affinity and low-affinity states will crit-
ically modify the apparent affinity of the DHP (Bean,
1984; Sanguinetti and Kass, 1984). Bean described that
for two states of the channel:

1
Kapp =

1/KL + (1 - L)/Kinact

where the apparent dissociation constant (Kapp) in a

given experimental situation will depend on the high-

affinity dissociation constant (Kjnact) and the low-affinity

dissociation constant (KL) and the proportion of chan-
nels in the high-affinity state (1 - L). A further compli-

cation is that, if the high-affinity state is available for
very short periods, there may not be time to allow equi-

librium. These factors allow apparent tissue selectivity
for DHPs whereby the drugs do not have time to block,
for example, neuronal L-type channels activated by short
action potentials, whereas L channels in smooth muscle,
with membrane potentials of only -50 to -55 mV, are

much more sensitive in that there is a greater predomi-
nance of the inactivated state at lower resting potentials.

Functional experiments may be set up to explore the
high-affinity component:

closed � open +-� inactivated

inactivated - DHP

Thus, constant potassium depolarisation with 40 mM K�
shifts the above equilibrium far to the right (approxi-

mately 70% inactivated channels in some tissues; Bean,
1984), allowing apparently competitive interactions with

the channels, with high-affinity pharmacological effects
of calcium antagonists with a similar order of potency to
that seen in radioligand binding experiments (Spedding,
1982, 1985a,b; table 4). Changes in depolarisation will,
therefore, be critical in the definition of drug potency.
Other changes in the local environment such as acidosis
have been claimed to make marked changes to the prop-
erties of calcium channels (Konnerth et al., 1987) which
may change sensitivity to drugs, and the pH will modify

drug potency when the pKa is in the appropriate range
(Mannhold et al., 1984).

A further complication in functional and radioligand-
binding studies reflects the highly lipophilic nature of
many of the drugs used to investigate channel types.
Uptake of DHPs and of other calcium antagonists into

biological membranes may be very high with accumula-
tion of 3,000-fold (nifedipine) to 19,000-fold (amlodipine)
(Rhodes et al., 1985; Chester et al., 1987; Mason et al.,
1991). This high concentration in the membrane may be
in equilibrium with the receptor site so that the apparent

dissociation constant (KDapp) should also be modified by
the membrane partition coefficient (Kpmem) to give the

local intramembrane dissociation constant, KD, which

may be up to four orders of magnitude different from the

constant calculated from the concentration in the

aqueous phase:

KD KDapp � Kpmern.

The aqueous concentration may, therefore, be very dif-

ferent from the concentration close to the binding site
in the channel.

Electrophysiological analysis must be used to assess
channel subtypes and probable sites of action of drugs.

Although electrophysiological techniques may be defini-

tive for assessing whether drugs affect the appropriate
ion currents, care must be taken in assessing the results,

bearing in mind that very nonphysiological conditions

may be used in the experimental protocol. Nevertheless,
these techniques are definitive in designating the ionic
selectivity of the channel under investigation and, hence,
whether it may be classed as a calcium-selective channel

in appropriate physiological conditions. Selectivity of
drug action must be shown in electrophysiological exper-

iments comparing effects on other channels in the same
tissue. In these experiments, great care must be taken to

assess the high-affinity component of a particular drug’s

action because the affinity for a particular channel state
may be entirely dependent on the experimental condi-

tions. Hence, experiments using a wide range of holding
potentials, stimulation frequencies, charge carriers, etc.
should be performed. Voltage or use dependency may
markedly change affinity (see above).

2. Radioligand-binding and autoradiographic studies.
Radioligand-binding and autoradiographic studies can

indicate sites of action and channel distribution; these
have been particularly useful in the definition of L-type

channel distribution in which high-affinity ligands are
readily available. The binding sites on the channels are
similar to receptor sites, in that binding may be accom-

panied by marked changes in channel activity, but there
may not be a known endogenous agonist for the site,
which is one ofthe criteria for a “receptor.” Stereospecific

radiolabeled probes should be used to define the site of
action on the channel subunit. Competitive interactions
should be defined with other drugs sharing the same

binding site. The preparation of a radiolabeled form of
the drug in question that binds irreversibly to the channel

(photoaffinity probes) is highly desirable in these exper-
iments so that the labeled channel subunit may be pun-

fled and identified. Allostenic interactions with drugs
that bind to other binding sites on the ion channel may

be difficult to interpret because this type of interaction
has been shown to be species, temperature, cation, tissue,
and ligand dependent; in these cases, a wide variety of

experimental procedures are required. Effects on modi-
fication of the dissociation rate of a radiolabeled ligand
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CALCIUM CHANNELS 367

by an unlabeled drug have been used to indicate whether

a compound is acting at the same site as the ligand

(unchanged dissociation rate) or at different, allosteni-

cally linked sites (faster or slower dissociation rate), but

a wide range of concentrations of the drug should be

used.
Binding experiments should be used to establish selec-

tivity of action in that the affinity of new drugs for

established sites on the Ca24 channel should be compared
with affinity for sites on other channels (e.g., [3H]ba-

trachotoxinin binding on sodium channels).

3. Molecular biology. The primary structure of a chan-

nel may be deduced from the cDNA sequence and these

sequences compared with those from other channels.

Expression of the channel proteins from complementary

RNA in frog oocytes or in mammalian cells allow for the

identification and confirmation of the channel of inter-

est. Further reconstitution experiments using purified
proteins allow the best definition of channels, but allow-

ance must be made for the influence of local biophase
characteristics (second messengers, surface charge, mem-

brane composition) on the performance of a channel in

its natural environment. Antibodies raised against the

channel subunits are useful in describing their role. The

site of action of a drug can be assigned to a particular

channel subunit when the appropriate radiolabeled probe

is prepared. The definition of a site of action of a partic-

ular drug or toxin may be made by covalently binding

the radiolabeled form to the channel and digesting and

sequencing the labeled peptides.

It may be impossible to fulfill all the criteria for
channel identification involving molecular biological

techniques for which there are no high-affinity probes to

label a channel; under these circumstances criteria 1 and

2 must be applied rigorously.

B. Classification of Binding Sites for Drugs on Calcium

Channels

Clear criteria that must be fulfilled for classification

of distinct binding sites for drugs on a particular channel
are: (a) demonstration of a stereoselective binding site
on the appropriate ion channel with competition from

other agents sharing this site and appropriate interac-

tions with other allosterically linked binding sites on the
channel. Wherever possible, radiolabeled forms of the
drug that can irreversibly bind to the channel (e.g., azido

forms) should be synthesised so that the subunit to which

the drug binds may be isolated and the amino acid
sequence deduced; (b) demonstration of the appropriate

electrophysiological changes in channel current following
drug application, taking into account possible voltage-

and use-dependent factors modifying drug action. Selec-
tivity of action vis-#{224}-visother channels must be shown.
The use of channel activators to reverse inhibitory effects

is important; (c) functional studies should be compatible
with the electrophysiological studies and clearly show

selectivity of action vis-#{224}-vis other sites. Interactions

with competing drugs and compounds should be defined.

Reversal of inhibitory effects by channel activators may

be a useful means of demonstration of the site of action;

(d) selectivity windows should be constructed to indicate
the site of action and relative affinities for T, N, L, P,
Na�, K�, C1 channels and other receptor sites. It is
important that the effects of any drug in an experimental
system be considered, depending on its selectivity profile,
so that effects are not erroneously ascribed to actions at
a particular site.

IV. Types of Voltage-dependent Calcium

Channels

The initial description of Ca2’ currents in the myocar-

dium by Reuter (1967) initiated much work to define the

properties of voltage-dependent Ca2� channels, and there
now appear to be many types of VDCCs. Tsien and
colleagues (Nowycky et al., 1985; Tsien et al., 1986; Fox
et al., 1987a,b; Tsien and Tsien, 1990) identified by
electrophysiological and pharmacological means differ-

ent channels which they called L type (for long lasting),
T type (for transient, tiny), and N type (for neuronal,
neither L nor T). This nomenclature is considered to be
useful, but the potential multiplicity of channels means

that future classifications may need to be revised. The

channels are classified according to their activation and
inactivation kinetics, their conductances, their ion spec-

ificity, and their sensitivity to drugs and toxins. Subse-

quently, Llinas and colleagues provided evidence that
there may exist high threshold VDCCs in some neurones,
and the channels were termed P-type channels (for Pur-
kinje cells). An overview ofthe properties ofthe channels

is shown in table 1, but it must be appreciated that
channel properties vary among tissues and the channels

may show different properties in other tissues. There
may be a wealth of different types of VDCCs. Some

electrophysiologists prefer to use “high- and low-thresh-
old” channels, without further discrimination, but the
existence of selective toxins and drugs points to major
classes, which are best defined at present as in table 2.

A. Voltage-dependent Ca2�-selective Channels

1. L-type channels. L-type channels, which are widely

distributed in tissues, particularly in heart and smooth
muscle, are highly sensitive to the DHPs, phenylalkylam-
ines, and benzothiazepines and, consequently, are the

channels in heart and smooth muscle targeted by Fleck-
enstein and Godfraind in the 1960s. For this reason, L-
type channels may be considered as being DHP sensitive.
There is a high density of L-type channels in skeletal
muscle, and the availability of high-affinity radiolabeled
probes allowed the primary structure of skeletal muscle
L-type channels to be elucidated. L-type channels may
consist of several subunits, known as a1, a2, fi, � #{244}.

The a1 subunit, from skeletal muscle, isolated on gels
is about 165,000 Da and contains important phosphor-
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FIG. 1. Putative structure of a1 subunit of L channel.

TABLE 2

Classes of voltage-dependent calcium channels

Channel (conductance)

L(25pS*) N(12-2OpS) T(8pS) P(10-l2pS)

Properties
Activation High voltage High voltage Low voltage Moderate high

voltage

Inactivation Slow Moderate Transient Very slow

Location/function Widespread, muscle
and nerve

Neuronal transmitter
release

Widespread pacemaker
activity

Neuronal, Purkinje

Blockers DHP, calciseptine,
phenylalkylam-

ines

Conotoxin Flunarizine? Funnel web spider
toxin ‘P-aga-IVA

* 110 mM Ba as charge carrier.

ylation sites and binding sites for some calcium antago-

nists. The protein has four repeating motifs (termed I to

IV), each containing six putative membrane-spanning

regions (termed 51 to 56; fig. 1), of which the 54 spans
are the putative voltage sensor. Thus, the subunit

strongly resembles sodium channels and is approxi-

mately 55% homologous to the sodium channel, espe-

cially in the membrane-spanning regions. Some drugs
may, therefore, have affinity with both Na� channels

and L-type channels (Gnima et al., 1986). The cytosolic
regions are significantly divergent from the sodium chan-

nel and, hence, will be of great importance in identifying

specific regions. The a1 subunit has been cloned from

rabbit skeletal muscle, heart, and lung, rat aorta, rat

brain, and human heart. Northern analysis has revealed

specific mRNA transcript sizes that are tissue specific

(i.e., 8.5 kb in heart, 6.5 kb in skeletal muscle, 6.5 and
8.5 kb in aorta, and 6.5 kb in brain), which points to the
probability of distinct isoforms of the L-type channel.

(Insufficient studies have been reported to allow a clear

determination of whether the L channel isoforms reflect
differences among species or tissues, although the skel-

etal muscle isoform is clearly different.) A comparison of

the deduced amino acids from the nucleotide sequences

are consistent with different isoforms. The a1 subunit

[skeletal muscle structure: 1873 amino acids, 212 kDa
(Tanabe et al., 1987; Ellis et al., 1988); rabbit heart

(Mikami et al., 1989; Slish et al., 1989); rat aorta and

IllOtif I II

brain (Koch et al., 1989); rabbit lung (Biel et al., 1990);

fig. 1] apparently forms the ion-selective pore and voltage

sensor and carries the binding sites for DHPs, phenylal-

kylamines such as verapamil, and benzothiazepines such
as diltiazem. The cardiac subunit, but not the skeletal

subunit, has been expressed in Xenopus oocytes and
shown to have many of the properties of the L-type

channel (Mikami et al., 1989).
Dysgenic mice (mdg/mdg), which have a lethal muta-

tion (Beam et al., 1986) and an abnormal a1 gene, no a1

unit in the dystrophic skeletal muscle (Knudson et al.,

1989) or L-type calcium current, and abnormal excita-

tion-contraction coupling (Pincon-Raymond et al.,

1985), have proven important experimental tools to de-

fine the critical role of the a1 subunit. Tanabe et al.

(1988) expressed the skeletal muscle a1 form in myotu-

bules from dysgenic mice and showed that expression
normalised excitation-contraction coupling. This group
went on (Tanabe et al., 1990a,b) to express the cardiac

a1 subunit in dysgenic myotubules and showed that this

isoform of the a1 subunit functioned as a “cardiac-type”

voltage sensor and ion pore, even when expressed in

skeletal muscle. Chimenic forms of the a1 subunit were

made to define which part of the molecule was critical

for excitation-contraction coupling (Tanabe et al.,
1990a,b). Perez-Reyes et al. (1989) expressed the a1

subunit in munine L cells which have no other L channels

and showed that DHP sites and Ca2� current were ex-

III Iv

 at T
ham

m
asart U

niversity on D
ecem

ber 8, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


CALCIUM CHANNELS 369

pressed, although abnormally. These experiments con-

clusively showed that the a1 subunit is the critical voltage

sensor and pore of the channel and apparently has the

receptor sites for the drugs classed as calcium antago-
nists. The role of the other subunits has not been as well

characterised as that of the a1 subunit, and they appear
to modulate the activity of the a1 subunit (Singer et al.,

1991). Furthermore, changes in the subunit composition
or coupling may represent additional ways of increasing

channel diversity.

An a2 subunit (structure determined by Ellis et al.,
1988), without binding sites for the drugs classed as

calcium antagonists, does not act as a channel but with

the t5 subunit increases calcium current following injec-

tion of a1 mRNA in Xenopus oocytes (Singer et al., 1991).
The f3 subunit (structure determined by Ruth et al., 1989)

has been shown to increase the rate of activation and

inactivation of the channel and to modify DHP binding
to the a1 subunit (Varadi et al., 1991). The fi subunit
may markedly increase current when coexpressed with

the a1 unit (Singer et al., 1991), and a recent report
(Varadi et al., 1991) indicates that the presence of the fi

unit increases the number of DHP-binding sites 12-fold
and markedly increases kinetics; it remains to be ex-

plained how general this phemomenon is (Lacerda et al.,

1991). A �y subunit (222 amino acids, structure deter-
mined by Jay et al., 1990) has been shown to occur in

skeletal muscle; the function is unknown. A #{244}subunit

may be linked by sulfydryl bonds to the a2 subunit.

There appear to be diverse forms of L-type channels,
allowing tissue selectivity and diversity of function. The

skeletal muscle a1 subunit is smaller (212 kDa) than the

cardiac form (242 kDa) and is encoded from a different
gene; the skeletal muscle a1 subunit may act as a voltage

sensor for the sarcoplasmic reticulum calcium release

channel which is ryanodine sensitive (Lai et al., 1988)

and has several different properties from the cardiac

subunit (McKenna et al., 1990). Both subunits resemble
the sodium channel with approximately 55% homology

in the membrane-spanning regions, which implies com-
mon ancestral forms. Rabbit heart, rat aorta and brain,
and rabbit lung a1 subunits have greater homology

(>60%) and may arise from alternative splicing (Koch
et al., 1989; Biel et al., 1990). Alternative splicing appears
to be an important mechanism for producing numerous
channel isoforms in mammalian tissues. Thus, voltage-

dependent Ca2� channels may be classed as in table 3,

with N-, T-, P- and L-type channels and the L-type

channels occurring in different isoforms.

L-type channels, particularly in the heart (Reuter,
1983; Brum et al., 1984), are also modulated by second-

messenger systems. Several drugs may, therefore, indi-
rectly modify channel function by acting at receptor
proteins or second-messenger transducers. This commit-
tee takes the view that these indirect interactions with a

wide variety of receptor and second-messenger proteins

TABLE 3

Classes of ion channel

1. Voltage-dependent Ca2�-selective channels

L type (Li, 2, 3, 4 isoforms; a,, a2, fi, ‘y, #{244}subunits identified)

T type

N type

P type

2. Other Ca2�-selective channels

Ca2� release channels in sarcoplasmic reticulum

Receptor-operated Ca2� channels

3. Other voltage-dependent ion channels, without Ca2� selectivity

Na�, K�, etc.

should be classed differently from direct binding of drugs

to sites on ion channels (see below). Thus, although L-

type channels may be modified by G proteins or aden-

ylate cyclase, drugs modifying G proteins or adenylate
cyclase should be classed as such and not as calcium

antagonists.
In conclusion, voltage-dependent L-type Ca2� channels

are relatively well defined (table 4) because of the avail-
ability of high-affinity drugs to probe the channels and
molecular genetic studies. L-type channels may be con-

sidered simply as those channels that are DHP sensitive.
2. T-type channels. T-type (for transient) channels

have very different electrophysiological characteristics

from L-type channels in that they require small depolar-

isations for activation and rapidly inactivate and may be
important for pacemaker activity in several tissues. The

T-type channel is located in a variety of tissues and has
been found concentrated in the sinoatnial node (Bean,
1985), the atnioventricular node, specialized conducting
tissue of the heart (Nilius et al., 1985; Tseng and Boyden,
1989), smooth muscle cells (Bean et a!., 1986; Worley et

al., 1986; Benham et al., 1987; Loirand et al., 1989; but
see Bolton et al., 1988), and neurones (Carbone and Lux,

1984, 1987a,b; Nowycky et al., 1985), where they may be
responsible for burst firing (White et al., 1989). There

are few, or no, specific blockers of T-type channels (see
below) and the lack of high-affinity probes has hindered

structural definition.
3. N-type channels. The N-type channel is generally

deemed to be sensitive to w-conotoxins and in certain
instances may be coupled to neurotransmitter release
(Hirning et al., 1988; Miller, 1987), whereas selective
antagonists of L-type channels do not normally modify
transmitter release (Haeusler, 1972). Tsien and col-
leagues (Kongsamut et al., 1989) found that the presyn-

aptic a2-adrenoceptor, when stimulated by noradrena-

line, inhibits the movement of calcium through the N-

type channel. Thus, some N-type channels, although
predominantly voltage activated and hence contributing
to neurotransmitter release or other events following

depolanisation of nerve terminals, may be modulated by
receptor-linked second-messenger systems, such as G
proteins. There may be a wide range of N channels in
that the electrophysiological characteristics of N chan-
nels vary among different tissues, but these channels are
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370 SPEDDING AND PAOLETTI

Characteristic

Endogenous ligand

Coupling class

Type

Subtype
Previous name

Functional assays (response)
Selective activators

Selective inhibitors
Potencies

Radioliband-binding assays

Radioligands

Ligand affinities

Binding site distribution
Transducing mechanisms

Structural information

TABLE 4

Summary of L channel characterzstks

Description

None identified so far

Ion channel
VDCC

L channel

Slow channel

Inhibition and stimulation of calcium current and of excitation-response coupling
DHP (Bay K 8644, CGP 28392, (+)-202-791)

DHPs, benzothiazepines, phenylalkylamines (table 3)
See text and table 6

Membrane preparations from heart, brain, smooth muscle, skeletal muscle, cell lines

DHPs: [3H]Nitrendipine, [3Hjnimodipine, [3H]isradipine, [3H]Bay K 8644, iodipine;

benzothiazepines: [3H]diltiazem, [3H]clentiazem; phenylalkylamines: [3H]verapamil,

[3Hjdevapamil; Others: [3HJSR33557, [3H]HOE 166, [3H]fluspirilene

DHPs, <i nM; benzothiazepines, 3-500 nM; phenylalkylamines, 2-50 nM; see table 6

and text
Widespread in excitable tissues
Voltage-dependent ion channel, may be modified by G proteins, calmodulin, protein

kinase C and cyclic AMP-dependent protein kinases

See text and figure 1

also coupled to a variety of second-messenger systems

modifying transmitter release (e.g., G proteins) which

may alter function. w-Conotoxin binds to and inhibits

N-type channel activity, blocking transmitter release. A

range ofconotoxins, such as SNX-111 from Conus magus

and SNX-183 from Conus striatus, may have selectivity

for N channel subtypes (Gohil et al., 1991).
4. P-type channels. P-type channels were proposed by

Llinas et al. (1989a,b) on the basis that DHP- and

conotoxin-resistant currents in cerebellar Purkinje and

granule cells and in squid giant axons were susceptible

to funnel web spider venom; in squid giant axon, trans-
mitter release was dependent on this channel and w-

agatoxin IVA may be the most selective toxin (Adams et
a!., 1992). These channels may form a larger proportion

of calcium channels in the brain than was hitherto sup-

posed (Leonard et al., 1987; Lin et al., 1990; Regan et al.,

1991) and may be responsible for neurotransmitter re-
lease in cell types in many brain areas (Hillman et al.,

1991). The channels show little inactivation. Recently,

Mon et al. (1991) defined, from brain cDNA, the primary
structure of a calcium channel (BI protein) with similar

pharmacological characteristics to the P channel; chan-

nel activity was expressed in Xenopus oocytes and was
dramatically increased by the coexpression of the a2 and

�3 subunits.

Therefore, conclusive evidence exists for a range of

calcium channels from experiments using molecular bi-
ological, electrophysiological, and radioligand-binding

techniques. At present, we consider that the main chan-

nel classes can best be accommodated in an “L, T, N, P”
classification. However, Snutch et al. (1990) identified

four distinct classes of cDNAs from rat brain (A, B, C,

D) with the the class C polypeptide being 97% homolo-
gous to the heart a1 subunit. The putative voltage-sensor

unit (54) differed between A,B and C,D, which implies

potential differences in electrophysiological properties.

Snutch et al. (1990) estimated that there are a minimum

of eight different calcium channel transcripts in rat
brain. It is likely that there exist many more types of

VDCCs. It is also likely that small changes in amino acid

sequence will lead to marked changes in electrophysio-
logical properties, ion selectivities, and sensitivity to

drugs. The classification described here is useful in that

marked functional differences in electrophysiological

properties and drug sensitivity can be accommodated.

B. Other Ca2�-sekctive Channels

Many Ca2� channels may not be primarily voltage

dependent but regulated by other factors. The Ca2� chan-

nel in the sarcoplasmic reticulum is a prime determinant

of contractility in many muscle types and is tightly linked
with L-type channels in skeletal muscle; ryanodine is the

most selective agent for this channel. Selective Ca24

channels that refill intracellular calcium stores have been

described in mast cells (Hoth and Penner, 1992); these
channels may be highly Ca2’ selective in that they are
not permeable to Mn2�. Furthermore, some Ca24 chan-

nels in the cell membrane may be activated by intracel-
lular Ca2� release and by inositol 1,3,4,5-tetrakisphos-

phate (e.g., in endothelium, Luckhoff and Clapham,

1992), linking receptor activation to Ca2� entry.

Receptor systems may be directly linked to channels

with some selectivity for Ca2� under certain conditions.

In these systems receptor activation rather than voltage-

dependent activation is the prime trigger, although there

may be some modulation by voltage. Thus, Bolton (1979)
hypothesised the existence of receptor-operated Ca2�

channels, and data (Godfraind et al., 1986; Haeusler and

De Peyer, 1989; Hallam and Rink, 1989) support the
existence of such channels, although selectivity for cal-

cium may be low. In the rabbit ear artery, a-adrenoceptor
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activation opens voltage-independent cation channels

that are not selective for calcium (Amedee et al., 1989).

Unfortunately, at present, the molecular biology of these
channels is not at the same stage as with voltage-de-
pendent channels [and it remains to be seen to what

extent the channel activation mechanisms described by
Luckhoff and Clapham (1992) explain some of the recep-
tor-mediated channel activityj, but these will be listed as

primary targets for drug action: ionotropic excitatory
amino acid receptor-linked channels, noradrenaline-

linked channels in smooth muscle, and nucleotide/nucle-

oside-linked channels (Benham and Tsien, 1987).
Of the ionotropic excitatory amino acid receptor-

linked channels that respond to glutamate, the N-
methyl-D-aspartate-gated channels (Moriyoshi et al.,

1991) have been shown, rather nonselectively, to conduct

Ca2�, whereas kainate- and a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionate-gated channels do not
(but see Hollmann et al., 1991). A new class of Ca2�-

permeable channels that respond to glutamate but are
not N-methyl-D-aspartate channels have been recently
reported (Gilbertson et al., 1991).

C. Other Voltage-dependent Ion Channels

The many other voltage-dependent ion channels that
are not selective for Ca2� represent potential targets for
drugs, particularly if there is homology between receptor
sites on these channels and on Ca2� channels (e.g., the
Na� channel, see above). Selectivity for calcium channels

must be assessed by comparing affinity with other chan-
nels. Because some drugs may be highly use or voltage

dependent, these factors must be taken into account, and
comparisons of affinity should be made in the same
tissues if possible.

D. Nonchannel Targets

Drugs may modulate many aspects of Ca2� mobilisa-
tion without affecting ion channels, and some of these

aspects are: Ca2�ATPase, Na�/Ca2� exchange, function-
ing of the sarcoplasmic reticulum, mitochondrial Ca2�

transport and the coupling of intracellular Ca2� levels
with oxidative metabolism, sensitivity of the contractile
proteins, cell nuclei.

V. Drug-binding Sites on Calcium Channel
Proteins

The classes of binding sites as defined by the most

selective drugs are shown in table 5.

A. Class 1: L Channel-selective Agents

The drugs classed as calcium antagonists which were
used in the early studies by Fleckenstein’s and God-
fraind’s groups have been found subsequently to inhibit

Ca2� entry into cells via L channels.
a. Dihydropyridines. Criteria for distinct binding sites

for DHPs on the a1 subunit of the L channel are fulfilled,
and many DHPs have very high affinity for the L-type

TABLE 5

Drug-binding sites on calcium channel proteins

1. Agents interacting selectively with binding sites on L-type channels

a. DHP site (nifedipine, nicardipine, nitrendipine, nisoldipine, fel-

odipine, isradipine, darodipine flordipine, amlodipine, nimodi-

pine, niguldipine, niludipine, oxodipine, riodipine, laciclipine, el-
godipine)

b. Benzothiazepine site (diltiazem, clentiazem, diclofurime)

c. Phenylalkylamine site (verapamil, gallopamil, levemopamil, ani-

pamil, devapamil, tiapamil)

2. Compounds acting at other undefined sites on L channels (SR 33557,

HOE 166, McN6186, MDL1233OA, MCI176, pinaverium, fluspiri-

lene)

3. Agents interacting selectively with other voltage-dependent Ca2�-

selective channels (no agent is known to be highly selective at these
sites)

a. T channels (flunarizine? tetrandine? see text)

b. N channels (conotoxins; see text)

C. P channels (funnel web spider toxins? see text)

4. Nonselective channel modulators (fendiline, prenylamine, bepridil,

caroverine, cinnarizine, flunarizine; see text)

5. Agents acting at other Ca2�-selective channels

a. Ca2� release channels in sarcoplasmic reticulum (ryanodine, not

an antagonist)
b. Receptor-gated channels

i. Excitatory amino acid channels

ii. a-Adrenoceptor-linked channels

iii. Angiotensin-linked channels

iv. Nucleotide/nucleoside-linked channels

channel. Although some affinity for other sites (mito-

chondrial, calmodulin, nucleoside transporter, etc.) has
been demonstrated, the stereoselectivity shown at these

sites is either absent or not similar to that shown for the
highly stereoselective interaction with the L-type chan-

nel. Some of the DHPs may be protonated at physiolog-
ical pH (nicardipine, amlodipine, niguldipine) which may
lead to different cellular distribution or kinetics at the

channel. DHP calcium antagonists such as nifedipine
have been well characterised to be highly potent inhibi-

tors of L-type channel function with use-dependent ef-
fects and low nanomolar affinity for the inactivated state

of the channel but much less affinity for other states
(e.g., closed, open) (Bean, 1984, Sanguinetti and Kass,
1984). The availability of 3H-DHPs as probes (Belle-

mann et al., 1981; Glossmann et al., 1985; Glossmann
and Ferry, 1983; Janis et al., 1987) allowed the demon-
stration of high-affinity binding that was Ca2� depend-
ent, although only very low concentrations (>1 �zM Ca2�,
i.e., concentrations normally present in trace amounts in

buffer) were required to allow full demonstration of
binding. Receptor distribution in the brain has been

mapped (Murphy et al., 1982; Cortes et al., 1983, 1984).
DHP calcium channel activators such as Bay K 8644

(Schramm et al., 1983) displace antagonist binding but
increase Ca2� current (Hess et al., 1984; Brown et al.,
1984; Sanguinetti et al., 1986) and have selective func-
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TABLE 6

Binding and functional data of (+)Lsradipine, (-)isradipine, nlsold�pine, (-)nimodipine, (+)nimodipine, nifedipine, and flunarizine in rat vessels*

Drug (preparation)

Binding studies (KD or K�, nM)
Functional studies � nM)

Membranes

Intact tissue

Physiological medium K� (100 mM)
K� contraction
(at 30-35 mm)

K�’Ca’� influx
(at 33-35 mm)

(+)Isradipine

Aorta 0.085#{176}
0�b 0.092#{176}

Mesenteric artery 0.055c 0.2’s 0#{149}044d 0�033d

Cerebral microvessels 0.113e 0.024e

(-)Isradipine

Aorta 14.9a 12.3#{176}

Mesenteric artery 23d 1d 5d

Cerebral microvessels i0.ie 5�9e

Nisoldipine

Aorta 0.148#{176} 0067b 0.071#{176} 0042b

Mesenteric artery 0.263” o�o58b 0#{149}049b

Cerebral microvessels

(-)Nimodipine

Aorta 0.546’ 0.234’

Mesenteric artery

Cerebral microvessels 0.77e 0.23e 0.14t 0.it

(+)Nimodipine
Aorta 2.89’ 1.371’

Mesenteric artery

Cerebral microvessels 5�9e 2AT 0.14t 0.lt

Nifedipine
Aorta 3.59#{176}

1#{149}3h 16h

Mesenteric artery
3C 3.1c i.2c 19h 1.9”

Cerebral microvessels 2.8’ 2.9e 2#{176}

Flunarizine

Aorta i9� 371

Mesenteric artery 500C >>1000c 9�C �C

Cerebral microvessels 8g 41

* References: #{176}Wibo et al., 1988; 1) Morel and Godfraind, 1991; � Morel and Godfraind, 1988; � Morel and Godfraind,

Godfraind, 1989; � Godfraind et al., 1985; � Morel et al., 1990; “ Godfraind, 1983; ‘ Godfraind and Dieu, 1981.

t Racemic mixture.
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tional interactions with other classes of channel modu-

lators (Su et al., 1984; Spedding and Berg, 1984).

Definition of the binding site of DHPs on the a1

subunit has been claimed (Striessnig et al., but also see

Regulla et al., 1991), but further confirmation of the

amino acids involved in the binding site is required

because the claims are conflicting. DHP binding to L-

type channels has an absolute requirement for divalent

cations (>1 MM), and the amino acid sequence with the
greatest proportion of DHP binding in the study of

Regulla et al. (1991) abuts the putative cytosolic calcium-

binding domain in the channel (EF hand, Babitch, 1990).

In contrast, the site described by Striessnig et al. (1991)

is accessible from the extracellular surface.
The equilibrium dissociation constants (Kd) and recep-

tor densities (Bmax) may vary with the DHP ligand used,

the temperature, the tissue, and the pH (maximal specific

binding over the pH range 6.5 to 7.7) (Glossmann et al.,

1985; Janis et al., 1987; Kenny et al., 1991). Affinities of

DHPs for L channels in functional and binding experi-

ments have been listed in comprehensive reviews (God-
fraind et al., 1986; Janis et al., 1987) and affinities from

one laboratory are listed in table 6. The values in table

6 represent affinity for one isoform of the channel

(smooth muscle)

b. Benzothiazepines. Benzothiazepines such as dilti-

azem have a distinct binding site on the a1 subunit, and

this site is linked allosterically to the DHP site. Inter-

actions with this site and the DHP site are highly ligand

and temperature dependent (Glossmann et al., 1985;

Galizzi et al., 1986; Mir and Spedding, 1987); the azido

ligand of diltiazem has been used to covalently label the

a1 subunit of the L-type channel (Vaghy et al., 1987;

Naito et al., 1989)

C. Verapamil-like agents. The site of action of verapa-
mil-like agents is distinct from the DHP and benzothi-

azepine sites but linked to the la and lb sites; a number
of compounds have high affinity for this site (Table 3).

The distribution of brain L-type channels labeled with

(-)-[3H]desmethoxyverapamil is identical with distri-

bution of channels with affinity for diltiazem or DHPs

(Ferry et al., 1984). Phenylalkylamine verapamil ana-
logues such as [3H]LU49888 label amino acids 1350 to

1390 in skeletal muscle, i.e., a different but closely op-
posed site to the DHP site (Striessnig and Catterall,

1991).

i987; e Morel and
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Recently, several compounds (SR33557: Schmid et al.,
1989; Polster et al., 1990; HOE 166: Striessnig et al.,

1988; pinaverium: Beech et al., 1990; fluspirilene: Qar et
al., 1987; King et al., 1989; Kenny et al., 1990) have been

shown to have affinity for L-type channels with poten-
tially novel sites of action. However, at present, there is

insufficient evidence according to the our criteria to allow
assignation of them to classes la, lb, or lc or to allow

designation of a new class. A new class may be designated
when all the criteria have been fully met. Nevertheless,

it is to be anticipated that several new sites will be

defined in the near future.

B. Class 2: Agents Interacting with Other Voltage-

dependent Ca2� Channels

There are no highly selective blockers of T or N

channels, although Ni2� has some selectivity for T chan-

nels compared with Cd2�, whereas Cd24 is more potent
at L and N channels. Several agents may block T chan-

nels, and there may be some differences in potency
depending on the tissue (e.g., rat hypothalamic neurones:

flunarizine > nicardipine > nifedipine > nimodipine>
diltiazem; Akaike et al., 1989; see also Tytgat et al., 1988;

Van Skiver et al., 1988). However, the selectivity of the
effects of flunarizine have still to be defined vis-#{224}-vis
sodium channels (Grima et al., 1986; Pauwels et al.,

1991), P-type and N-type (Tytgat et al., 1991) channels,
and therefore, agents such as flunarizine cannot be de-

finitively assigned to this class yet. Ethosuximide may
have selectivity for T-type channels compared with so-

dium channels, and tetrandine has recently been shown
to have some selectivity for T channels compared with

L channels in neuroblastoma cells (Liu et al., 1991).

Some DHPs (felodipine, Van Skiver et al., 1988; nicar-

dipine, Akaike et al., 1989) may also block T channels,
but these drugs are still selective for L channels and are,

therefore, grouped as class la agents. w-Conotoxin has
selectivity for N channels. Funnel web spider toxins

(Llinas et al., 1989a,b) were used to designate P channels,
but there are many different and poorly quantified toxins

in most extracts; one purified form, w-agatoxin-IVA

(Mintz et al., 1992), has been used to define P channels.

C. Class 3: Nonselective Channel Modulators

Several drugs that are important in a variety of path-
ological conditions clearly interact with L channels but
in a manner distinct from class 1 agents, as assessed by

functional and radioligand-binding tests and interactions
with L channel activators (e.g., flunarizine, etc., Sped-

ding, 1985a,b). These drugs are, therefore, calcium an-
tagonists and will selectively reverse the effects of DHP
calcium channel activators such as Bay K 8644 (Spedding
and Berg, 1984). However, these agents have low selec-

tivity for L channels in electrophysiological and radioli-
gand-binding studies, indicating either that the drugs
have genuinely low selectivity or that the molecular
means of analysing their interactions with L channels

are nonoptimal. Because the functional profiles of this

class of agents indicate differences from class 1 agents
and there is no selectivity for L channels, these drugs
are currently classed separately.

VI. Nomenclature

The terms “calcium antagonist” or “calcium entry

blocker” have gained historic pharmacological and din-

ical acceptance when applied to agents inhibiting L-type
channel function by acting at sites la, ib, or ic, and

these terms will undoubtedly continue to be used to
describe the classic pharmacological properties of this
type of agent. However, it is clear that new pharmaco-
logical profiles may be expected from interactions with
other types of calcium channel, or even from new binding

sites on the L-type channel, which will be quite different
from the profile associated with, for example, nifedipine.

Thus, the term “calcium channel modulator” is preferred
for agents interacting with calcium channels. The term

“calcium agonist” is inappropriate, and agents such as
Bay K 8644 should be referred to as calcium channel

activators and inhibitory compounds should be referred

to as calcium channel blockers.
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